enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Allele frequency - Wikipedia

    en.wikipedia.org/wiki/Allele_frequency

    Allele frequency, or gene frequency, is the relative frequency of an allele (variant of a gene) at a particular locus in a population, expressed as a fraction or percentage. [1] Specifically, it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size.

  3. Genetic drift - Wikipedia

    en.wikipedia.org/wiki/Genetic_drift

    Genetic drift, also known as random genetic drift, allelic drift or the Wright effect, [1] is the change in the frequency of an existing gene variant in a population due to random chance. [2] Genetic drift may cause gene variants to disappear completely and thereby reduce genetic variation. [3]

  4. Microevolution - Wikipedia

    en.wikipedia.org/wiki/Microevolution

    Microevolution is the change in allele frequencies that occurs over time within a population. [1] This change is due to four different processes: mutation, selection (natural and artificial), gene flow and genetic drift. This change happens over a relatively short (in evolutionary terms) amount of time compared to the changes termed macroevolution.

  5. Fixation (population genetics) - Wikipedia

    en.wikipedia.org/wiki/Fixation_(population_genetics)

    In the absence of mutation or heterozygote advantage, any allele must eventually either be lost completely from the population, or fixed, i.e. permanently established at 100% frequency in the population. [2] Whether a gene will ultimately be lost or fixed is dependent on selection coefficients and chance fluctuations in allelic proportions. [3]

  6. Fisher's fundamental theorem of natural selection - Wikipedia

    en.wikipedia.org/wiki/Fisher's_fundamental...

    The sophistication that Price pointed out, and that had made understanding difficult, is that the theorem gives a formula for part of the change in gene frequency, and not for all of it. This is a part that can be said to be due to natural selection. [9]

  7. Gene flow - Wikipedia

    en.wikipedia.org/wiki/Gene_flow

    Migrants change the distribution of genetic diversity among populations, by modifying allele frequencies (the proportion of members carrying a particular variant of a gene). High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. [ 4 ]

  8. Genotype frequency - Wikipedia

    en.wikipedia.org/wiki/Genotype_frequency

    if the allele A frequency is denoted by the symbol p and the allele a frequency denoted by q, then p+q=1. For example, if p =0.7, then q must be 0.3. In other words, if the allele frequency of A equals 70%, the remaining 30% of the alleles must be a , because together they equal 100%.

  9. Hardy–Weinberg principle - Wikipedia

    en.wikipedia.org/wiki/Hardy–Weinberg_principle

    Where the A gene is sex linked, the heterogametic sex (e.g., mammalian males; avian females) have only one copy of the gene (and are termed hemizygous), while the homogametic sex (e.g., human females) have two copies. The genotype frequencies at equilibrium are p and q for the heterogametic sex but p 2, 2pq and q 2 for the homogametic sex.