Search results
Results from the WOW.Com Content Network
Another supporter of the wave theory was Leonhard Euler. He argued in Nova theoria lucis et colorum (1746) that diffraction could more easily be explained by a wave theory. In 1816 André-Marie Ampère gave Augustin-Jean Fresnel an idea that the polarization of light can be explained by the wave theory if light were a transverse wave. [37]
its predecessors like the theories of luminiferous aether, its early competitors, i.e.: Ritz’s ballistic theory of light, the models of electromagnetic mass created by Abraham (1902), Lorentz (1904), Bucherer (1904) and Langevin (1904). This list also mentions the origins of standard notation (like c) and terminology (like theory of relavity).
In part correct, [2] being able to successfully explain refraction, reflection, rectilinear propagation and to a lesser extent diffraction, the theory would fall out of favor in the early nineteenth century, as the wave theory of light amassed new experimental evidence. [3] The modern understanding of light is the concept of wave-particle duality.
But for electric force, it looks more like the gravitational force in Newton's law. A transmitting medium was not required. After Maxwell theory unified light and electric and magnetic waves, it was favored that both light and electric magnetic waves propagate in the same aether medium (or called the luminiferous aether). [151]
In modern physics, the double-slit experiment demonstrates that light and matter can exhibit behavior of both classical particles and classical waves.This type of experiment was first performed by Thomas Young in 1801, as a demonstration of the wave behavior of visible light. [1]
In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.
The wavelength of visible light waves varies between 400 and 700 nm, but the term "light" is also often applied to infrared (0.7–300 μm) and ultraviolet radiation (10–400 nm). The wave model can be used to make predictions about how an optical system will behave without requiring an explanation of what is "waving" in what medium.
This timeline lists significant discoveries in physics and the laws of nature, including experimental discoveries, theoretical proposals that were confirmed experimentally, and theories that have significantly influenced current thinking in modern physics. Such discoveries are often a multi-step, multi-person process.