Search results
Results from the WOW.Com Content Network
Median: the value such that the set of values less than the median, and the set greater than the median, each have probabilities no greater than one-half. Mode : for a discrete random variable, the value with highest probability; for an absolutely continuous random variable, a location at which the probability density function has a local peak.
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [citation needed] One author uses the terminology of the "Rule of Average Conditional Probabilities", [4] while another refers to it as the "continuous law of ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
To empirically estimate the expected value of a random variable, one repeatedly measures observations of the variable and computes the arithmetic mean of the results. If the expected value exists, this procedure estimates the true expected value in an unbiased manner and has the property of minimizing the sum of the squares of the residuals ...
The one-sided variant can be used to prove the proposition that for probability distributions having an expected value and a median, the mean and the median can never differ from each other by more than one standard deviation. To express this in symbols let μ, ν, and σ be respectively the mean, the median, and the standard deviation. Then
The probabilities of rolling several numbers using two dice Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur.
In probability theory, Hoeffding's inequality provides an upper bound on the probability that the sum of bounded independent random variables deviates from its expected value by more than a certain amount. Hoeffding's inequality was proven by Wassily Hoeffding in 1963. [1]