enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    A Bayes estimator derived through the empirical Bayes method is called an empirical Bayes estimator. Empirical Bayes methods enable the use of auxiliary empirical data, from observations of related parameters, in the development of a Bayes estimator. This is done under the assumption that the estimated parameters are obtained from a common prior.

  3. Empirical Bayes method - Wikipedia

    en.wikipedia.org/wiki/Empirical_Bayes_method

    To apply empirical Bayes, we will approximate the marginal using the maximum likelihood estimate (MLE). But since the posterior is a gamma distribution, the MLE of the marginal turns out to be just the mean of the posterior, which is the point estimate E ⁡ ( θ ∣ y ) {\displaystyle \operatorname {E} (\theta \mid y)} we need.

  4. Recursive Bayesian estimation - Wikipedia

    en.wikipedia.org/wiki/Recursive_Bayesian_estimation

    Sequential Bayesian filtering is the extension of the Bayesian estimation for the case when the observed value changes in time. It is a method to estimate the real value of an observed variable that evolves in time. There are several variations: filtering when estimating the current value given past and current observations, smoothing

  5. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Bayes' theorem describes the conditional probability of an event based on data as well as prior information or beliefs about the event or conditions related to the event. [3] [4] For example, in Bayesian inference, Bayes' theorem can be used to estimate the parameters of a probability distribution or statistical model. Since Bayesian statistics ...

  6. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  7. Bayesian average - Wikipedia

    en.wikipedia.org/wiki/Bayesian_average

    A Bayesian average is a method of estimating the mean of a population using outside information, especially a pre-existing belief, [1] which is factored into the calculation. This is a central feature of Bayesian interpretation. This is useful when the available data set is small. [2] Calculating the Bayesian average uses the prior mean m and a ...

  8. Category:Bayesian estimation - Wikipedia

    en.wikipedia.org/wiki/Category:Bayesian_estimation

    Pages in category "Bayesian estimation" The following 17 pages are in this category, out of 17 total. This list may not reflect recent changes. ...

  9. Minimum mean square error - Wikipedia

    en.wikipedia.org/wiki/Minimum_mean_square_error

    Thus unlike non-Bayesian approach where parameters of interest are assumed to be deterministic, but unknown constants, the Bayesian estimator seeks to estimate a parameter that is itself a random variable. Furthermore, Bayesian estimation can also deal with situations where the sequence of observations are not necessarily independent.