Search results
Results from the WOW.Com Content Network
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to ...
Continuous probability distribution: Sometimes this term is used to mean a probability distribution whose cumulative distribution function (c.d.f.) is (simply) continuous. Sometimes it has a less inclusive meaning: a distribution whose c.d.f. is absolutely continuous with respect to Lebesgue measure. This less inclusive sense is equivalent to ...
Continuity (mathematics), the opposing concept to discreteness; common examples include Continuous probability distribution or random variable in probability and statistics; Continuous game, a generalization of games used in game theory; Law of continuity, a heuristic principle of Gottfried Leibniz; Continuous function, in particular:
The definition of uniform continuity appears earlier in the work of Bolzano where he also proved that continuous functions on an open interval do not need to be uniformly continuous. In addition he also states that a continuous function on a closed interval is uniformly continuous, but he does not give a complete proof.
Every Lipschitz continuous map is uniformly continuous, and hence continuous. More generally, a set of functions with bounded Lipschitz constant forms an equicontinuous set. The Arzelà–Ascoli theorem implies that if { f n } is a uniformly bounded sequence of functions with bounded Lipschitz constant, then it has a convergent subsequence.
A bump function is a smooth function with compact support.. In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain.
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
a.c. – absolutely continuous. acrd – inverse chord function. ad – adjoint representation (or adjoint action) of a Lie group. adj – adjugate of a matrix. a.e. – almost everywhere. AFSOC - Assume for the sake of contradiction; Ai – Airy function. AL – Action limit. Alt – alternating group (Alt(n) is also written as A n.) A.M ...