Search results
Results from the WOW.Com Content Network
A physical symbol system (also called a formal system) takes physical patterns (symbols), combining them into structures (expressions) and manipulating them (using processes) to produce new expressions. The physical symbol system hypothesis (PSSH) is a position in the philosophy of artificial intelligence formulated by Allen Newell and Herbert ...
Rule 30 is an elementary cellular automaton introduced by Stephen Wolfram in 1983. [2] Using Wolfram's classification scheme, Rule 30 is a Class III rule, displaying aperiodic, chaotic behaviour. This rule is of particular interest because it produces complex, seemingly random patterns from simple, well-defined rules.
In 1981, Richard Dean showed the quaternion group can be realized as the Galois group Gal(T/Q) where Q is the field of rational numbers and T is the splitting field of the polynomial x 8 − 72 x 6 + 180 x 4 − 144 x 2 + 36 {\displaystyle x^{8}-72x^{6}+180x^{4}-144x^{2}+36} .
The Wolfram Language (/ ˈ w ʊ l f r əm / WUUL-frəm) is a proprietary, [7] general-purpose, very high-level multi-paradigm programming language [8] developed by Wolfram Research. It emphasizes symbolic computation , functional programming , and rule-based programming [ 9 ] and can employ arbitrary structures and data. [ 9 ]
A maximum matching (also known as maximum-cardinality matching [2]) is a matching that contains the largest possible number of edges. There may be many maximum matchings. The matching number of a graph G is the size of a maximum matching. Every maximum matching is maximal, but not every maximal matching is a maximum matching.
A flowchart is a type of diagram that represents a workflow or process. A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task. The flowchart shows the steps as boxes of various kinds, and their order by connecting the boxes with arrows.
Because of this problem of undecidability in the formal language of computation, Wolfram terms this inability to "shortcut" a system (or "program"), or otherwise describe its behavior in a simple way, "computational irreducibility." The idea demonstrates that there are occurrences where theory's predictions are effectively not possible.
Interactions in the Standard Model. All Feynman diagrams in the model are built from combinations of these vertices. q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle ...