Search results
Results from the WOW.Com Content Network
The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m 2), the SI derived unit of area; and the kilogram per cubic metre (kg/m 3 or kg⋅m −3), the SI derived unit of density.
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
Change of acceleration per unit time: the third time derivative of position m/s 3: L T −3: vector Jounce (or snap) s →: Change of jerk per unit time: the fourth time derivative of position m/s 4: L T −4: vector Magnetic field strength: H: Strength of a magnetic field A/m L −1 I: vector field Magnetic flux density: B: Measure for the ...
Units for volume, however, can be factored into the base units of length (m 3), thus they are considered derived or compound units. Sometimes the names of units obscure the fact that they are derived units. For example, a newton (N) is a unit of force, which may be expressed as the product of mass (with unit kg) and acceleration (with unit m⋅ ...
Afrikaans; العربية; Aragonés; Asturianu; تۆرکجه; বাংলা; 閩南語 / Bân-lâm-gú; Беларуская (тарашкевіца) Bosanski
Cartesian y-axis basis unit vector unitless kinetic energy: joule (J) wave vector: radian per meter (m −1) Boltzmann constant: joule per kelvin (J/K) wavenumber: radian per meter (m −1) stiffness: newton per meter (N⋅m −1) ^ Cartesian z-axis basis unit vector
Retrieved from "https://en.wikipedia.org/w/index.php?title=SI_derived_units_with_special_names&oldid=1111430333"
In mathematics, the total derivative of a function f at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one. In many situations, this is the same as ...