Search results
Results from the WOW.Com Content Network
Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. [2] Electrochemical processes are ET reactions. ET reactions are relevant to photosynthesis and respiration and commonly involve transition ...
The freedom of electrons to migrate also gives metal atoms, or layers of them, the capacity to slide past each other. Locally, bonds can easily be broken and replaced by new ones after a deformation. This process does not affect the communal metallic bonding very much, which gives rise to metals' characteristic malleability and ductility. This ...
Bimolecular electron transfer always produces a reactive chemical species, free radicals. [citation needed] Nucleic acids (precisely the single, free nucleotides, not those bound in a DNA/RNA strand) have an extremely short lifetime due to a fast internal conversion. [3] Both melanin and DNA have some of the fastest internal conversion rates.
Most IC electrons come from the K shell (the 1s state), as these two electrons have the highest probability of being within the nucleus. However, the s states in the L, M, and N shells (i.e., the 2s, 3s, and 4s states) are also able to couple to the nuclear fields and cause IC electron ejections from those shells (called L or M or N internal ...
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
In the reactivity series, the metals with the highest propensity to donate their electrons to react are listed first, followed by less reactive ones. Therefore, a metal higher on the list can displace anything below it. Here is a condensed version of the same: [1]
The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material,; v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and
Atoms can be ionized by bombardment with radiation, but the more usual process of ionization encountered in chemistry is the transfer of electrons between atoms or molecules. This transfer is usually driven by the attaining of stable ("closed shell") electronic configurations. Atoms will gain or lose electrons depending on which action takes ...