enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Arbitrary precision arithmetic is also used to compute fundamental mathematical constants such as π to millions or more digits and to analyze the properties of the digit strings [8] or more generally to investigate the precise behaviour of functions such as the Riemann zeta function where certain questions are difficult to explore via ...

  3. Python syntax and semantics - Wikipedia

    en.wikipedia.org/wiki/Python_syntax_and_semantics

    In Python 2 (and most other programming languages), unless explicitly requested, x / y performed integer division, returning a float only if either input was a float. However, because Python is a dynamically-typed language, it was not always possible to tell which operation was being performed, which often led to subtle bugs, thus prompting the ...

  4. Complex data type - Wikipedia

    en.wikipedia.org/wiki/Complex_data_type

    The Go programming language has built-in types complex64 (each component is 32-bit float) and complex128 (each component is 64-bit float). Imaginary number literals can be specified by appending an "i". The Perl core module Math::Complex provides support for complex numbers. Python provides the built-in complex type. Imaginary number literals ...

  5. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Python: the built-in int (3.x) / long (2.x) integer type is of arbitrary precision. The Decimal class in the standard library module decimal has user definable precision and limited mathematical operations (exponentiation, square root, etc. but no trigonometric functions).

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    Converting a double-precision binary floating-point number to a decimal string is a common operation, but an algorithm producing results that are both accurate and minimal did not appear in print until 1990, with Steele and White's Dragon4. Some of the improvements since then include:

  7. Floating-point error mitigation - Wikipedia

    en.wikipedia.org/wiki/Floating-point_error...

    Variable-length arithmetic operations are considerably slower than fixed-length format floating-point instructions. When high performance is not a requirement, but high precision is, variable length arithmetic can prove useful, though the actual accuracy of the result may not be known.

  8. Precision (computer science) - Wikipedia

    en.wikipedia.org/wiki/Precision_(computer_science)

    Quadruple-precision floating-point format; Octuple-precision floating-point format; Of these, octuple-precision format is rarely used. The single- and double-precision formats are most widely used and supported on nearly all platforms. The use of half-precision format has been increasing especially in the field of machine learning since many ...

  9. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    Floating-point arithmetic operations are performed by software, and double precision is not supported at all. The extended format occupies three 16-bit words, with the extra space simply ignored. [3] The IBM System/360 supports a 32-bit "short" floating-point format and a 64-bit "long" floating-point format. [4]