enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). [1]

  3. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.

  4. Induction, bounding and least number principles - Wikipedia

    en.wikipedia.org/wiki/Induction,_bounding_and...

    Informally, for a first-order formula of arithmetic () with one free variable, the induction principle for expresses the validity of mathematical induction over , while the least number principle for asserts that if has a witness, it has a least one. For a formula (,) in two free variables, the bounding principle for states that, for a fixed ...

  5. Well-ordering principle - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_principle

    Then, by the well-ordering principle, there is a least element ; cannot be prime since a prime number itself is considered a length-one product of primes. By the definition of non-prime numbers, n {\displaystyle n} has factors a , b {\displaystyle a,b} , where a , b {\displaystyle a,b} are integers greater than one and less than n ...

  6. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    In number theory, Bertrand's postulate is the theorem that for any integer >, there exists at least one prime number with n < p < 2 n − 2. {\displaystyle n<p<2n-2.} A less restrictive formulation is: for every n > 1 {\displaystyle n>1} , there is always at least one prime p {\displaystyle p} such that

  7. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...

  8. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    Similarly, the set of integers has the least-upper-bound property; if is a nonempty subset of and there is some number such that every element of is less than or equal to , then there is a least upper bound for , an integer that is an upper bound for and is less than or equal to every other upper bound for .

  9. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    This formula reduces to [3] [4] = + = [() <]; that is, it tautologically defines as the smallest integer m for which the prime-counting function is at least n. This formula is also not efficient. This formula is also not efficient.