Search results
Results from the WOW.Com Content Network
The aerodynamic force on a powered airplane is commonly represented by three vectors: thrust, lift and drag. [3]: 151 [1]: § 14.2 The other force acting on an aircraft during flight is its weight, which is a body force and not an aerodynamic force.
The aerodynamic center is the point at which the pitching moment coefficient for the airfoil does not vary with lift coefficient (i.e. angle of attack), making analysis simpler. [ 1 ] d C m d C L = 0 {\displaystyle {dC_{m} \over dC_{L}}=0} where C L {\displaystyle C_{L}} is the aircraft lift coefficient .
The aerodynamic forces are generated with respect to body axes, which is not an inertial frame. In order to calculate the motion, the forces must be referred to inertial axes. This requires the body components of velocity to be resolved through the heading angle () into inertial axes. Resolving into fixed (inertial) axes:
The wind frame is a convenient frame to express the aerodynamic forces and moments acting on an aircraft. In particular, the net aerodynamic force can be divided into components along the wind frame axes, with the drag force in the −x w direction and the lift force in the −z w direction. Mnemonics to remember angle names
The center of pressure of an aircraft is the point where all of the aerodynamic pressure field may be represented by a single force vector with no moment. [3] [4] A similar idea is the aerodynamic center which is the point on an airfoil where the pitching moment produced by the aerodynamic forces is constant with angle of attack. [5] [6] [7]
For steady, level flight, the integrated force due to the pressure differences is equal to the total aerodynamic lift of the airplane and to the airplane's weight. According to Newton's third law, this pressure force exerted on the ground by the air is matched by an equal-and-opposite upward force exerted on the air by the ground, which offsets ...
Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft.An aeroplane (airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".
divergence where the aerodynamic forces increase the twist of a wing which further increases forces; control reversal where control activation produces an opposite aerodynamic moment that reduces, or in extreme cases reverses, the control effectiveness; and; flutter which is uncontained vibration that can lead to the destruction of an aircraft.