enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    6 H 2 O + 6 CO 2 + energy → C 6 H 12 O 6 + 6 O 2 where C 6 H 12 O 6 is glucose (which is subsequently transformed into other sugars , starches , cellulose , lignin , and so forth). The value of the photosynthetic efficiency is dependent on how light energy is defined – it depends on whether we count only the light that is absorbed, and on ...

  3. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    The underlying force driving these reactions is the Gibbs free energy of the reactants relative to the products. If donor and acceptor (the reactants) are of higher free energy than the reaction products, the electron transfer may occur spontaneously. The Gibbs free energy is the energy available ("free") to do work.

  4. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    In the Hill reaction: [92] 2 H 2 O + 2 A + (light, chloroplasts) → 2 AH 2 + O 2. A is the electron acceptor. Therefore, in light, the electron acceptor is reduced and oxygen is evolved. Samuel Ruben and Martin Kamen used radioactive isotopes to determine that the oxygen liberated in photosynthesis came from the water.

  5. Water splitting - Wikipedia

    en.wikipedia.org/wiki/Water_splitting

    In thermolysis, water molecules split into hydrogen and oxygen. For example, at 2,200 °C (2,470 K; 3,990 °F) about three percent of all H 2 O are dissociated into various combinations of hydrogen and oxygen atoms, mostly H, H 2, O, O 2, and OH. Other reaction products like H 2 O 2 or HO 2 remain minor. At the very high temperature of 3,000 ...

  6. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The high-energy oxidized tyrosine gives off its energy and returns to the ground state by taking up a proton and removing an electron from the oxygen-evolving complex and ultimately from water. [4] Kok's S-state diagram shows the reactions of water splitting in the oxygen-evolving complex.

  7. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    The reaction center will drive photosynthesis by taking light and turning it into chemical energy [3] that can then be used by the chloroplast. [2] Two families of reaction centers in photosystems can be distinguished: type I reaction centers (such as photosystem I in chloroplasts and in green-sulfur bacteria) and type II reaction centers (such ...

  8. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the energy-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants , algae , and cyanobacteria .

  9. Oxygen-evolving complex - Wikipedia

    en.wikipedia.org/wiki/Oxygen-evolving_complex

    The oxygen-evolving complex (OEC), also known as the water-splitting complex, is a water-oxidizing enzyme involved in the photo-oxidation of water during the light reactions of photosynthesis. [3] OEC is surrounded by 4 core proteins of photosystem II at the membrane-lumen interface.