enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homocysteine - Wikipedia

    en.wikipedia.org/wiki/Homocysteine

    In the body, homocysteine can be recycled into methionine or converted into cysteine with the aid of vitamin B 6, B 9, and B 12. [3] High levels of homocysteine in the blood (hyperhomocysteinemia) is regarded as a marker of cardiovascular disease, likely working through atherogenesis, which can result in ischemic injury.

  3. Remethylation - Wikipedia

    en.wikipedia.org/wiki/Remethylation

    Homocysteine (left) and methionine (right) are related by demethylation and remethylation. Remethylation is a major step in the conversion of homocysteine to the essential amino acid methionine . The remethylation process involves the enzyme methionine synthase (MS), which requires vitamin B 12 as a cofactor, and also depends indirectly on ...

  4. Methionine synthase - Wikipedia

    en.wikipedia.org/wiki/Methionine_synthase

    Methionine synthase catalyzes the final step in the regeneration of methionine (Met) from homocysteine (Hcy). Both the cobalamin-dependent and cobalamin-independent forms of the enzyme carry out the same overall chemical reaction, the transfer of a methyl group from 5-methyltetrahydrofolate (N 5 -MeTHF) to homocysteine, yielding ...

  5. Transsulfuration pathway - Wikipedia

    en.wikipedia.org/wiki/Transsulfuration_pathway

    The production of homocysteine through transsulfuration allows the conversion of this intermediate to methionine, through a methylation reaction carried out by methionine synthase. The reverse pathway is present in several organisms, including humans, and involves the transfer of the thiol group from homocysteine to cysteine via a similar ...

  6. S-Adenosyl methionine - Wikipedia

    en.wikipedia.org/wiki/S-Adenosyl_methionine

    This is hydrolysed to homocysteine and adenosine by S-adenosylhomocysteine hydrolase EC 3.3.1.1 and the homocysteine recycled back to methionine through transfer of a methyl group from 5-methyltetrahydrofolate, by one of the two classes of methionine synthases (i.e. cobalamin-dependent (EC 2.1.1.13) or cobalamin-independent (EC 2.1.1.14)).

  7. MTRR (gene) - Wikipedia

    en.wikipedia.org/wiki/MTRR_(gene)

    Elevated homocysteine is an independent risk factor for cardiovascular disease and inversely correlated to consumed vitamin B12/B6 and folate levels. [37] Homocysteine methylation to methionine is catalyzed by MTR, resulting in appropriate intracellular levels of methionine and tetrahydrofolate, alongside non-toxic homocysteine levels.

  8. Hyperhomocysteinemia - Wikipedia

    en.wikipedia.org/wiki/Hyperhomocysteinemia

    Homocysteine is a non-protein amino acid, synthesized from methionine and either recycled back into methionine or converted into cysteine with the aid of the B-group vitamins [citation needed]. About 50% of homocysteine [citation needed] is converted back to methionine by remethylation via the methionine synthase major pathway.

  9. Homocystinuria - Wikipedia

    en.wikipedia.org/wiki/Homocystinuria

    The methionine that is not converted into protein is converted to S-adenosyl-methionine which goes on to form homocysteine again. Betaine is, therefore, only effective if the quantity of methionine to be removed is small. Hence treatment includes both betaine and a diet low in methionine.