Ads
related to: solenoid coil design calculationswalmart.com has been visited by 1M+ users in the past month
Search results
Results from the WOW.Com Content Network
A solenoid (/ ˈ s oʊ l ə n ɔɪ d / [1]) is a type of electromagnet formed by a helical coil of wire whose length is substantially greater than its diameter, [2] which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it.
In engineering, a solenoid is a device that converts electrical energy to mechanical energy, using an electromagnet formed from a coil of wire. The device creates a magnetic field [ 1 ] from electric current , and uses the magnetic field to create linear motion.
The design or interpretation of the required space of an orthocyclic winding is usually realized by applying an iterative approach. At first, the specified parameters of the required number of windings, the required wire cross section and the maximum space available for an insulated coil are used for the calculation basis.
A common tractive electromagnet is a uniformly wound solenoid and plunger. The solenoid is a coil of wire, and the plunger is made of a material such as soft iron. Applying a current to the solenoid applies a force to the plunger and may make it move. The plunger stops moving when the forces upon it are balanced.
A variable force solenoid (VFS) is an electro-hydraulic device that controls pressure proportionally or inversely proportionally to a signal (voltage or current) obtained from the on-board controller of a powertrain. A low flow VFS is used as a signal level devices for transmission line pressure control or application of clutches.
A solenoid is a long, thin coil; i.e., a coil whose length is much greater than its diameter. Under these conditions, and without any magnetic material used, the magnetic flux density B {\displaystyle B} within the coil is practically constant and is given by B = μ 0 N i ℓ {\displaystyle B={\frac {\mu _{0}\,N\,i}{\ell }}}
The combined costs of conductors, structure and refrigerator for toroidal coils are dominated by the cost of the superconductor. The same trend is true for solenoid coils. HTSC coils cost more than LTSC coils by a factor of 2 to 4. HTSC was expected to be cheaper due to lower refrigeration requirements but this is not the case.
Non-magnetic core tubes are used to isolate the fluid from the coil. The core tube encloses the plugnut, the core spring, and the core. The coil slips over the core tube; a retaining clip engages the depression near the closed end of the core tube and holds the coil on the core tube. Solenoid valve designs have many variations and challenges.
Ads
related to: solenoid coil design calculationswalmart.com has been visited by 1M+ users in the past month