Search results
Results from the WOW.Com Content Network
For example, if we were studying the relationship between biological sex and income, we could use a dummy variable to represent the sex of each individual in the study. The variable could take on a value of 1 for males and 0 for females (or vice versa). In machine learning this is known as one-hot encoding.
Summary statistics: Apply common Bayesian tests from frequentist summary statistics for t-test, regression, and binomial tests. Survival Analyses: non- & semi-parametric; Time Series: Time series analysis. Visual Modeling: Graphically explore the dependencies between variables. R Console: Execute R code in a console.
As an example, in comparing different populations in the world, the variance of income tends to increase with mean income. If we consider a number of small area units (e.g., counties in the United States) and obtain the mean and variance of incomes within each county, it is common that the counties with higher mean income also have higher ...
A different set of techniques have been developed for "large-scale multiple testing", in which thousands or even greater numbers of tests are performed. For example, in genomics, when using technologies such as microarrays, expression levels of tens of thousands of genes can be measured, and genotypes for millions of genetic markers can be ...
To illustrate, consider an example from Cook et al. where the analysis task is to find the variables which best predict the tip that a dining party will give to the waiter. [12] The variables available in the data collected for this task are: the tip amount, total bill, payer gender, smoking/non-smoking section, time of day, day of the week ...
This is the aim of multiple factor analysis which balances the different issues (i.e. the different groups of variables) within a global analysis and provides, beyond the classical results of factorial analysis (mainly graphics of individuals and of categories), several results (indicators and graphics) specific of the group structure.
For quantitative analysis, data is coded usually into measured and recorded as nominal or ordinal variables.. Questionnaire data can be pre-coded (process of assigning codes to expected answers on designed questionnaire), field-coded (process of assigning codes as soon as data is available, usually during fieldwork), post-coded (coding of open questions on completed questionnaires) or office ...
[2] [3] [4] For example: ”a” “ab” “b” The above indicates that the first variable “a” has a mean (or average) that is statistically different from the third one “b”. But, the second variable “ab” has a mean that is not statistically different from either the first or the third variable. Let's look at another example: