Ad
related to: force exerted by a photon of wavelength equals
Search results
Results from the WOW.Com Content Network
The backward acting force of pressure exerted on the front surface is thus larger than the force of pressure acting on the back. Hence, as the resultant of the two forces, there remains a force that counteracts the motion of the plate and that increases with the velocity of the plate. We will call this resultant 'radiation friction' in brief."
Seen another way, the photon can be considered as its own antiparticle (thus an "antiphoton" is simply a normal photon with opposite momentum, equal polarization, and 180° out of phase). The reverse process, pair production , is the dominant mechanism by which high-energy photons such as gamma rays lose energy while passing through matter. [ 32 ]
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.
The force imparted to a solar sail arises from the momentum of photons. The momentum of a photon or an entire flux is given by Einstein's relation: [23] [24] = / where p is the momentum, E is the energy (of the photon or flux), and c is the speed of light. Specifically, the momentum of a photon depends on its wavelength p = h/λ
The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle (see mass–energy equivalence). It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons (a process known as Compton scattering).
The photon having non-zero linear momentum, one could imagine that it has a non-vanishing rest mass m 0, which is its mass at zero speed. However, we will now show that this is not the case: m 0 = 0. Since the photon propagates with the speed of light, special relativity is called for. The relativistic expressions for energy and momentum ...
photon energy: n: 1: count of photons n with energy Q p = h c/λ. [nb 2] photon flux: Φ q: count per second: s −1: T −1: photons per unit time, dn/dt with n = photon number. also called photon power: photon intensity: I: count per steradian per second sr −1 ⋅s −1: T −1: dn/dω: photon radiance: L q: count per square metre per ...
Ad
related to: force exerted by a photon of wavelength equals