Search results
Results from the WOW.Com Content Network
The foot-pound force (symbol: ft⋅lbf, [1] ft⋅lb f, [2] or ft⋅lb [3]) is a unit of work or energy in the engineering and gravitational systems in United States customary and imperial units of measure. It is the energy transferred upon applying a force of one pound-force (lbf) through a linear displacement of one foot.
pound (avoirdupois) per cubic foot lb/ft 3: ≡ lb/ft 3: ≈ 16.018 463 37 kg/m 3: pound (avoirdupois) per cubic inch lb/in 3: ≡ lb/in 3: ≈ 2.767 990 471 × 10 4 kg/m 3: pound (avoirdupois) per gallon (imperial) lb/gal ≡ lb/gal ≈ 99.776 372 66 kg/m 3: pound (avoirdupois) per gallon (US fluid) lb/gal ≡ lb/gal ≈ 119.826 4273 kg/m 3 ...
v p is the velocity of the projectile expressed in feet per second (ft/s). v c is the velocity of the powder charge expressed in feet per second (ft/s). g c is the dimensional constant and is the numeral coefficient of 32.1739 7000 is the conversion factor to set the equation equal to pounds.
Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat. The resulting value, η (eta), ranges between 0 and 1. [1] [2] [3]
tech: maximum power output of one GE90 jet engine as installed on the Boeing 777: 10 8: 1.04 × 10 8 W tech: power producing capacity of the Niagara Power Plant, the first electrical power plant in history 1.4 × 10 8 W tech: average power consumption of a Boeing 747 passenger aircraft 1.9 × 10 8 W tech: peak power output of a Nimitz-class ...
2×10 −23 J: Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin [6] [7] 10 −22 2–3000×10 −22 J Energy of infrared light photons [8] 10 −21: zepto-(zJ) 1.7×10 −21 J 1 kJ/mol, converted to energy per molecule [9] 2.1×10 ...
For example, Concorde cruised at 1354 mph, or 7.15 million feet per hour, with its engines giving an SFC of 1.195 lb/(lbf·h) (see below); this means the engines transferred 5.98 million foot pounds per pound of fuel (17.9 MJ/kg), equivalent to an SFC of 0.50 lb/(lbf·h) for a subsonic aircraft flying at 570 mph, which would be better than even ...
A typical turbocharged V8 diesel engine might have an engine power of 250 kW (340 hp) and a mass of 380 kg (840 lb), [1] giving it a power-to-weight ratio of 0.65 kW/kg (0.40 hp/lb). Examples of high power-to-weight ratios can often be found in turbines. This is because of their ability to operate at very high speeds.