enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...

  3. Talk:Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Talk:Quotient_rule

    The total differential proof uses the fact that the derivative of 1/x is −1/x 2.But without the quotient rule, one doesn't know the derivative of 1/x, without doing it directly, and once you add that to the proof, it doesn't seem as "elegant" anymore, but without it, it seems circular.

  4. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  6. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position. For example, if an object's position on a line is given by

  8. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    An example of the use of discrete calculus in mechanics is Newton's second law of motion: historically stated it expressly uses the term "change of motion" which implies the difference quotient saying The change of momentum of a body is equal to the resultant force acting on the body and is in the same direction.

  9. Linearity of differentiation - Wikipedia

    en.wikipedia.org/wiki/Linearity_of_differentiation

    Then, as shown in the derivation from the previous section, we can first use the sum law while differentiation, and then use the constant factor rule, which will reach our conclusion for linearity. In order to prove the difference rule, the second function can be redefined as another function multiplied by the constant coefficient of − 1 ...

  1. Related searches quotient rule using derivatives videos youtube music relaxing meditation

    derivative graph ruleslogarithmic derivative rule