Search results
Results from the WOW.Com Content Network
The event that contains all possible outcomes of an experiment is its sample space. A single outcome can be a part of many different events. [4] Typically, when the sample space is finite, any subset of the sample space is an event (that is, all elements of the power set of the sample space are defined as
A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, [5] are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols.
This article describes experimental procedures for determining whether a coin is fair or unfair. There are many statistical methods for analyzing such an experimental procedure. This article illustrates two of them. Both methods prescribe an experiment (or trial) in which the coin is tossed many times and the result of each toss is recorded.
In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin. John Edmund Kerrich performed experiments in coin flipping and found that a coin made from a wooden disk about the size of a crown and coated on one side with lead landed heads (wooden side up) 679 times out of 1000. [1]
A random experiment is described or modeled by a mathematical construct known as a probability space. A probability space is constructed and defined with a specific kind of experiment or trial in mind. A mathematical description of an experiment consists of three parts: A sample space, Ω (or S), which is the set of all possible outcomes.
A fair coin has the probability of success 0.5 by definition. In this case, there are exactly two possible outcomes. Rolling a die, where a six is "success" and everything else a "failure". In this case, there are six possible outcomes, and the event is a six; the complementary event "not a six" corresponds to the other five possible outcomes.
Random assignment or random placement is an experimental technique for assigning human participants or animal subjects to different groups in an experiment (e.g., a treatment group versus a control group) using randomization, such as by a chance procedure (e.g., flipping a coin) or a random number generator. [1]
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]