Search results
Results from the WOW.Com Content Network
For example, the derivative of the sine function is written sin ′ (a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle. All derivatives of circular trigonometric functions can be found from those of sin( x ) and cos( x ) by means of the quotient rule applied to functions such ...
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.
When g(x) equals g(a), then the difference quotient for f ∘ g is zero because f(g(x)) equals f(g(a)), and the above product is zero because it equals f′(g(a)) times zero. So the above product is always equal to the difference quotient, and to show that the derivative of f ∘ g at a exists and to determine its value, we need only show that ...
sinh x is half the difference of e x and e −x cosh x is the average of e x and e −x In terms of the exponential function : [ 1 ] [ 4 ] Hyperbolic sine: the odd part of the exponential function, that is, sinh x = e x − e − x 2 = e 2 x − 1 2 e x = 1 − e − 2 x 2 e − x . {\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e ...