Search results
Results from the WOW.Com Content Network
Newton's notation for differentiation; Leibniz's notation for differentiation; Simplest rules Derivative of a constant; Sum rule in differentiation; Constant factor rule in differentiation; Linearity of differentiation; Power rule; Chain rule; Local linearization; Product rule; Quotient rule; Inverse functions and differentiation; Implicit ...
Defining g −1 as the inverse of g is an implicit definition. For some functions g, g −1 (y) can be written out explicitly as a closed-form expression — for instance, if g(x) = 2x − 1, then g −1 (y) = 1 / 2 (y + 1). However, this is often not possible, or only by introducing a new notation (as in the product log example below).
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let f {\displaystyle f} and g {\displaystyle g} be n {\displaystyle n} -times differentiable functions. The base case when n = 1 {\displaystyle n=1} claims that: ( f g ) ′ = f ′ g + f g ′ , {\displaystyle (fg)'=f'g+fg',} which is the usual product rule and is known ...
The modern development of calculus is usually credited to Isaac Newton (1643–1727) and Gottfried Wilhelm Leibniz (1646–1716), who provided independent [e] and unified approaches to differentiation and derivatives. The key insight, however, that earned them this credit, was the fundamental theorem of calculus relating differentiation and ...
In mathematics and computer algebra, automatic differentiation (AD), also called algorithmic differentiation or computational differentiation, [6] [7] is a set of techniques to numerically evaluate the derivative of a function specified by a computer program. AD exploits the fact that every computer program, no matter how complicated, executes ...
The explicit midpoint method is sometimes also known as the modified Euler method, [1] the implicit method is the most simple collocation method, and, applied to Hamiltonian dynamics, a symplectic integrator. Note that the modified Euler method can refer to Heun's method, [2] for further clarity see List of Runge–Kutta methods.