Search results
Results from the WOW.Com Content Network
A boost converter or step-up converter is a DC-to-DC converter that increases voltage, while decreasing current, from its input to its output . It is a class of switched-mode power supply (SMPS) containing at least two semiconductors, a diode and a transistor , and at least one energy storage element: a capacitor , inductor , or the two in ...
Fig. 1: Schematic of a buck–boost converter. Fig. 2: The two operating states of a buck–boost converter: When the switch is turned on, the input voltage source supplies current to the inductor, and the capacitor supplies current to the resistor (output load). When the switch is opened, the inductor supplies current to the load via the diode D.
The boost/buck capabilities of the SEPIC are possible because of capacitor C1 and inductor L2. Inductor L1 and switch S1 create a standard boost converter, which generates a voltage (V S1) that is higher than V IN, whose magnitude is determined by the duty cycle of the switch S1.
Fig. 1: Schematic of a flyback converter. The flyback converter is used in both AC/DC, and DC/DC conversion with galvanic isolation between the input and any outputs. The flyback converter is a buck-boost converter with the inductor split to form a transformer, so that the voltage ratios are multiplied with an additional advantage of isolation.
The basic schematic of a boost converter. For example, if a DC source, an inductor, a switch, and the corresponding electrical ground are placed in series and the switch is driven by a square wave, the peak-to-peak voltage of the waveform measured across the switch can exceed the input voltage from the DC source. This is because the inductor ...
The switch is typically a MOSFET, IGBT, or BJT transistor. The Ćuk converter [1] (Serbo-Croatian:, English: / ˈ tʃ uː k /) is a type of buck-boost converter with low ripple current. [2] A Ćuk converter can be seen as a combination of boost converter and buck converter, having one switching device and a mutual capacitor, to couple the energy.
As an example, consider the use of a 10 hp, 1760 r/min, 440 V, three-phase induction motor (a.k.a. induction electrical machine in an asynchronous generator regime) as asynchronous generator. The full-load current of the motor is 10 A and the full-load power factor is 0.8.
Inrush current, input surge current, or switch-on surge is the maximal instantaneous input current drawn by an electrical device when first turned on. Alternating-current electric motors and transformers may draw several times their normal full-load current when first energized, for a few cycles of the input waveform.