Search results
Results from the WOW.Com Content Network
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
It is impossible to mathematically prove Newton's law from Gauss's law alone, because Gauss's law specifies the divergence of g but does not contain any information regarding the curl of g (see Helmholtz decomposition). In addition to Gauss's law, the assumption is used that g is irrotational (has zero curl), as gravity is a conservative force:
The best-known example is the so-called "paradox of the plankton". [6] All plankton species live on a very limited number of resources, primarily solar energy and minerals dissolved in the water. According to the competitive exclusion principle, only a small number of plankton species should be able to coexist on these resources.
Any inverse-square law can instead be written in a Gauss's law-type form (with a differential and integral form, as described above). Two examples are Gauss's law (in electrostatics), which follows from the inverse-square Coulomb's law, and Gauss's law for gravity, which follows from the inverse-square Newton's law of universal gravitation. The ...
It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of ...
Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.
The result found in Procedure 5, that a charged object enclosed in a metal container induces an equal charge on the container, can be proved using Gauss's law. [7] [9] [19] Assume the container A completely encloses the object C, without an opening (this assumption is explained below), and that C has a charge of Q coulombs.
The extension of the above considerations confirms that where B is to H, and where J is to ρ, then it necessarily follows from Gauss's law and from the equation of continuity of charge that E is to D i.e. B parallels with E, whereas H parallels with D. Engineering diagram of Boltzmann's Bicykel. Boltzmann's Bicykel model of electromagnetic ...