enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter can be determined using a pendulum oscillating above the surface of a body as: [13] μ ≈ 4 π 2 r 2 L T 2 {\displaystyle \mu \approx {\frac {4\pi ^{2}r^{2}L}{T^{2}}}} where r is the radius of the gravitating body, L is the length of the pendulum, and T is the period of the pendulum (for the reason of the ...

  3. Sound power - Wikipedia

    en.wikipedia.org/wiki/Sound_power

    Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. [1] It is defined [2] as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface."

  4. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...

  5. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    Standard gravitational parameter: cubic meter per second squared mu nought Vacuum permeability or the magnetic constant henry per meter (H/m) nu: frequency: hertz (Hz) kinematic viscosity: meter squared per second (m 2 /s) neutrino: xi: electromotive force: volt (V)

  6. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  7. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    Quantity (common name/s) (Common) symbol/s SI units Dimension Number of wave cycles N: dimensionless dimensionless (Oscillatory) displacement Symbol of any quantity which varies periodically, such as h, x, y (mechanical waves), x, s, η (longitudinal waves) I, V, E, B, H, D (electromagnetism), u, U (luminal waves), ψ, Ψ, Φ (quantum mechanics).

  8. Specific potential energy - Wikipedia

    en.wikipedia.org/wiki/Specific_potential_energy

    The product GM is the standard gravitational parameter and is often known to higher precision than G or M separately. The potential has units of energy per mass, e.g., J/kg in the MKS system. By convention, it is always negative where it is defined, and as x tends to infinity, it approaches zero.

  9. Sound intensity - Wikipedia

    en.wikipedia.org/wiki/Sound_intensity

    Sound intensity, also known as acoustic intensity, is defined as the power carried by sound waves per unit area in a direction perpendicular to that area. The SI unit of intensity, which includes sound intensity, is the watt per square meter (W/m 2 ).