Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
The faster the relative velocity, the greater the time dilation between them, with time slowing to a stop as one clock approaches the speed of light (299,792,458 m/s). In theory, time dilation would make it possible for passengers in a fast-moving vehicle to advance into the future in a short period of their own time.
Relation between the speed and the Lorentz factor γ (and hence the time dilation of moving clocks). Time dilation as predicted by special relativity is often verified by means of particle lifetime experiments. According to special relativity, the rate of a clock C traveling between two synchronized laboratory clocks A and B, as seen by a ...
In 2010, Chou et al. performed tests in which both gravitational and velocity effects were measured at velocities and gravitational potentials much smaller than those used in the mountain-valley experiments of the 1970s. It was possible to confirm velocity time dilation at the 10 −16 level at speeds below 36 km/h. Also, gravitational time ...
As can be seen from Fig 6-2 of a Minkowski diagram in a non-inertial reference frame, the object once dropped, gains speed, reaches a maximum, and then sees its speed decrease and asymptotically cancel on the horizon where its proper time freezes at . The velocity is measured by an observer at rest in the accelerated rocket.
At the time he only considered the time-dilating manifestation of gravity, which is the dominating contribution at non-relativistic speeds; however relativistic objects travel through space a comparable amount as they do though time, so purely spatial curvature becomes just as important.
Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2 × 10 −4 sec when the radar pulses pass near the sun. Such a change, equivalent to 60 km in distance, could now be measured over the required path ...
The time dilation factor between the bookkeeper and the moving test-particle can also be put into the form = where the numerator is the gravitational, and the denominator is the kinematic component of the time dilation.