Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.
The measured elapsed time of a light signal in a gravitational field is longer than it would be without the field, and for moderate-strength nearly static fields the difference is directly proportional to the classical gravitational potential, precisely as given by standard gravitational time dilation formulas.
In the context of GPS the most prominent correction introduced by general relativity is gravitational time dilation: the clocks located deeper in the gravitational potential well (i.e. closer to the attracting body) tick slower. Satellite clocks are slowed by their orbital speed but sped up by their distance out of the Earth's gravitational well.
However, approximately 412 muons per hour arrived in Cambridge, resulting in a time dilation factor of 8.8 ± 0.8. Frisch and Smith showed that this is in agreement with the predictions of special relativity: The time dilation factor for muons on Mount Washington traveling at 0.995 c to 0.9954 c is approximately 10.2.
Length contraction can also be derived from time dilation, [34] according to which the rate of a single "moving" clock (indicating its proper time) is lower with respect to two synchronized "resting" clocks (indicating ). Time dilation was experimentally confirmed multiple times, and is represented by the relation:
where the numerator is the gravitational, and the denominator is the kinematic component of the time dilation. For a particle falling in from infinity the left factor equals the right factor, since the in-falling velocity v {\textstyle v} matches the escape velocity c r s r {\textstyle c{\sqrt {\frac {r_{\text{s}}}{r}}}} in this case.
In 2010, Chou et al. performed tests in which both gravitational and velocity effects were measured at velocities and gravitational potentials much smaller than those used in the mountain-valley experiments of the 1970s. It was possible to confirm velocity time dilation at the 10 −16 level at speeds below 36 km/h. Also, gravitational time ...