Search results
Results from the WOW.Com Content Network
Gravitational biology is the study of the effects gravity has on living organisms. Throughout the history of the Earth life has evolved to survive changing conditions, such as changes in the climate and habitat. However, one constant factor in evolution since life first began on Earth is the force of gravity.
A recent study showed that for gravitropism to occur in shoots, a lot of an inclination, instead of a weak gravitational force, is necessary. This finding sets aside gravity sensing mechanisms that would rely on detecting the pressure of the weight of statoliths.
Gravitaxis (or geotaxis [1]) is a form of taxis characterized by the directional movement of an organism in response to gravity. [2]There are a few different causes for gravitaxis.
Another study that has been published in the Proceedings of the National Academy of Sciences, reports that some bacteria can exist even in extreme "hypergravity". In other words, they can still live and breed despite gravitational forces that are 400,000 times greater than what's felt here on Earth.
The usual type of clinostat turns slowly to avoid centrifugal effects and this is called the "slow rotation clinostat". There has been debate as to the most suitable speed of rotation: if it is too slow the plant has time to begin physiological responses to gravity; if it is too fast, centrifugal forces and mechanical strains introduce artifacts.
Gravitation, also known as gravitational attraction, is the mutual attraction between all masses in the universe.Gravity is the gravitational attraction at the surface of a planet or other celestial body; [6] gravity may also include, in addition to gravitation, the centrifugal force resulting from the planet's rotation (see § Earth's gravity).
A gravitational lens is matter, such as a cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein 's general theory of relativity .
Gravitational neuromorphology studies the effects of altered gravity on the architecture of the central, peripheral, and autonomic nervous systems. This subfield aims to expand the current understanding of the adaptive capabilities of nervous systems, and specifically examines how environmental effects can alter nervous system structure and ...