Search results
Results from the WOW.Com Content Network
For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator of 2 / 4 . A fraction that is reducible can be reduced by dividing both the numerator ...
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two , e.g. 1 / 8 = 1 / 2 3 .
The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0 , a mathematical truth. But the same substitution applied to the original equation results in x /6 + 0/0 = 1 , which is mathematically meaningless .
7.2.4 Example 4. 8 Higher dimensions. 9 See also. 10 Notes. 11 References. 12 External links. ... which can be simplified, by folding each pair of fractions into one ...
Examples include: Simplification of algebraic expressions, in computer algebra; Simplification of boolean expressions i.e. logic optimization; Simplification by conjunction elimination in inference in logic yields a simpler, but generally non-equivalent formula; Simplification of fractions
For example, a ratio of 3:2 is the same as 12:8. It is usual either to reduce terms to the lowest common denominator, or to express them in parts per hundred . If a mixture contains substances A, B, C and D in the ratio 5:9:4:2 then there are 5 parts of A for every 9 parts of B, 4 parts of C and 2 parts of D.
A complex fraction is a fraction whose numerator or denominator, or both, contains a fraction. A simple fraction contains no fraction either in its numerator or its denominator. A fraction is in lowest terms if the only factor common to the numerator and the denominator is 1. An expression which is not in fractional form is an integral ...
If x 2 is the remaining fraction after this step of the greedy expansion, it satisfies the equation P 1 (x 2 + 1 / 2 ) = 0, which can be expanded as P 2 (x 2) = 4x 2 2 + 8x 2 − 1 = 0. Since P 2 (x) < 0 for x = 1 / 9 , and P 2 (x) > 0 for all x > 1 / 8 , the next term in the greedy expansion is 1 / 9 .