Search results
Results from the WOW.Com Content Network
Therefore, the efficiency of all real machines is less than 1. A hypothetical machine without friction is called an ideal machine; such a machine would not have any energy losses, so its output power would equal its input power, and its efficiency would be 1 (100%). For hydropower turbines the efficiency is referred to as hydraulic efficiency ...
Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical , electric power , mechanical work , light (radiation), or heat .
The power input to the equipment will be greater owing to the less than 100% efficiency of the device. [1] [2] [3] Efficiency of a device is often defined as the ratio of output power to the sum of output power and losses. In some types of equipment, it is possible to measure or calculate losses directly.
For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance or COP) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work). The efficiency of a heat engine is ...
In computing, performance per watt is a measure of the energy efficiency of a particular computer architecture or computer hardware.Literally, it measures the rate of computation that can be delivered by a computer for every watt of power consumed.
A realistic indication of energy efficiency over an entire year can be achieved by using seasonal COP or seasonal coefficient of performance (SCOP) for heat. Seasonal energy efficiency ratio (SEER) is mostly used for air conditioning. SCOP is a new methodology which gives a better indication of expected real-life performance of heat pump ...
A simple machine, such as a lever, pulley, or gear train, is "ideal" if the power input is equal to the power output of the device, which means there are no losses. In this case, the mechanical efficiency is 100%. Mechanical efficiency is the performance of the machine compared to its theoretical maximum as performed by an ideal machine.
Watt's engine operated with steam at slightly above atmospheric pressure. Watt's improvements increased efficiency by a factor of over 2.5. [16] The lack of general mechanical ability, including skilled mechanics, machine tools, and manufacturing methods, limited the efficiency of actual engines and their design until about 1840. [17]