Search results
Results from the WOW.Com Content Network
Interplanetary magnetic field. The heliospheric current sheet is a three-dimensional form of a Parker spiral that results from the influence of the Sun 's rotating magnetic field on the plasma in the interplanetary medium. [1] The interplanetary magnetic field (IMF), also commonly referred to as the heliospheric magnetic field (HMF), [2] is the ...
The heliospheric current sheet, or interplanetary current sheet, is a surface separating regions of the heliosphere where the interplanetary magnetic field points toward and away from the Sun. [1] A small electrical current with a current density of about 10 −10 A /m 2 flows within this surface, forming a current sheet confined to this ...
The L-shell, L-value, or McIlwain L-parameter (after Carl E. McIlwain) is a parameter describing a particular set of planetary magnetic field lines. Colloquially, L-value often describes the set of magnetic field lines which cross the Earth's magnetic equator at a number of Earth-radii equal to the L-value. For example, describes the set of the ...
Maximum plasma density ... This template should be used to present information on both intrinsic and induced planetary magnetospheres belonging to both Solar System ...
A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
Magnetospheric electric convection field. Electric field created by impact of solar wind onto the magnetosphere. The impact of the solar wind onto the magnetosphere generates an electric field within the inner magnetosphere (r < 10 a; with a the Earth's radius) - the convection field. [1] Its general direction is from dawn to dusk.
Schematic view of the different current systems which shape the Earth's magnetosphere. In many MHD systems most of the electric current is compressed into thin nearly-two-dimensional ribbons termed current sheets. [10] These can divide the fluid into magnetic domains, inside of which the currents are relatively weak.