enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    If the edge length of a regular dodecahedron is , the radius of a circumscribed sphere (one that touches the regular dodecahedron at all vertices), the radius of an inscribed sphere (tangent to each of the regular dodecahedron's faces), and the midradius (one that touches the middle of each edge) are: [21] =, =, =. Given a regular dodecahedron ...

  3. Rhombic triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_triacontahedron

    Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± ⁠ 1 / φ ⁠) and cyclic permutations of these coordinates.

  4. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    For most practical purposes, the volume inside a sphere inscribed in a cube can be approximated as 52.4% of the volume of the cube, since V = ⁠ π / 6 ⁠ d 3, where d is the diameter of the sphere and also the length of a side of the cube and ⁠ π / 6 ⁠ ≈ 0.5236.

  5. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    the radius of the sphere passing through the eight order three vertices is exactly equal to the length of the sides: = The surface area A and the volume V of the rhombic dodecahedron with edge length a are: [ 4 ] A = 8 2 a 2 ≈ 11.314 a 2 , V = 16 3 9 a 3 ≈ 3.079 a 3 . {\displaystyle {\begin{aligned}A&=8{\sqrt {2}}a^{2}&\approx 11.314a^{2 ...

  6. Talk:Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Talk:Surface-area-to...

    The comparison of cube to sphere or sphere to any other shape should use an equivalent radius. This radius can be derived either by equating the areas of the two solids, obtaining the radius, and then calculating the surface-area-to-volume ratio using it, or by equating the volumes of the two solids, obtaining the radius, and then calculating.

  7. Truncated icosahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_icosahedron

    The surface area and the volume of the truncated icosahedron of edge length are: [2] = (+ +) = +. The sphericity of a polyhedron describes how closely a polyhedron resembles a sphere. It can be defined as the ratio of the surface area of a sphere with the same volume to the polyhedron's surface area, from which the value is between 0 and 1.

  8. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 (r) is the surface area of an (n ...

  9. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    Proposition 11: The volume of a cone (or cylinder) of the same height is proportional to the area of the base. [6] Proposition 12: The volume of a cone (or cylinder) that is similar to another is proportional to the cube of the ratio of the diameters of the bases. [7] Proposition 18: The volume of a sphere is proportional to the cube of its ...