enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609 (except the third law, and was fully published in 1619), describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in the heliocentric theory of Nicolaus Copernicus with elliptical orbits and explained how planetary ...

  3. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force. It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova , [ 1 ] [ 2 ] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation.

  4. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Kepler published the first two laws in 1609 and the third law in 1619. They supplanted earlier models of the Solar System, such as those of Ptolemy and Copernicus. Kepler's laws apply only in the limited case of the two-body problem. Voltaire and Émilie du Châtelet were the first to call them "Kepler's laws".

  5. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1 (thus excluding the circular orbit). In a wider sense, it is a Kepler orbit with negative energy. This includes the radial elliptic orbit, with eccentricity equal to 1. They are frequently used during various astrodynamic calculations.

  6. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    When an engine thrust or propulsive force is present, Newton's laws still apply, but Kepler's laws are invalidated. When the thrust stops, the resulting orbit will be different but will once again be described by Kepler's laws which have been set out above. The three laws are: The orbit of every planet is an ellipse with the Sun at one of the foci.

  7. Binary mass function - Wikipedia

    en.wikipedia.org/wiki/Binary_mass_function

    The binary mass function follows from Kepler's third law when the radial velocity of one binary component is known. [1] Kepler's third law describes the motion of two bodies orbiting a common center of mass. It relates the orbital period with the orbital separation between the two bodies, and the sum of their masses.

  8. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    According to Kepler's Third Law, the orbital period T of two point masses orbiting each other in a circular or elliptic orbit is: [1] = where: a is the orbit's semi-major axis; G is the gravitational constant, M is the mass of the more massive body.

  9. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    From the laws of motion and the law of universal gravitation, Newton was able to derive Kepler's laws, which are specific to orbital motion in astronomy. Since Kepler's laws were well-supported by observation data, this consistency provided strong support of the validity of Newton's generalized theory, and unified celestial and ordinary mechanics.