enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Picard–Lindelöf theorem - Wikipedia

    en.wikipedia.org/wiki/Picard–Lindelöf_theorem

    A standard proof relies on transforming the differential equation into an integral equation, then applying the Banach fixed-point theorem to prove the existence of a solution, and then applying Grönwall's lemma to prove the uniqueness of the solution.

  3. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    Uniqueness: no positive integer n has two different Zeckendorf representations. The first part of Zeckendorf's theorem (existence) can be proven by induction . For n = 1, 2, 3 it is clearly true (as these are Fibonacci numbers), for n = 4 we have 4 = 3 + 1 .

  4. Uniqueness theorem - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_theorem

    A uniqueness theorem (or its proof) is, at least within the mathematics of differential equations, often combined with an existence theorem (or its proof) to a combined existence and uniqueness theorem (e.g., existence and uniqueness of solution to first-order differential equations with boundary condition). [3]

  5. Uniqueness quantification - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_quantification

    In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement

  6. Cauchy–Kovalevskaya theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Kovalevskaya_theorem

    In mathematics, the Cauchy–Kovalevskaya theorem (also written as the Cauchy–Kowalevski theorem) is the main local existence and uniqueness theorem for analytic partial differential equations associated with Cauchy initial value problems. A special case was proven by Augustin Cauchy , and the full result by Sofya Kovalevskaya .

  7. Disjunction and existence properties - Wikipedia

    en.wikipedia.org/wiki/Disjunction_and_existence...

    The disjunction property is satisfied by a theory if, whenever a sentence A ∨ B is a theorem, then either A is a theorem, or B is a theorem.; The existence property or witness property is satisfied by a theory if, whenever a sentence (∃x)A(x) is a theorem, where A(x) has no other free variables, then there is some term t such that the theory proves A(t).

  8. ‘Trump-proof’ state laws are the focus as California ...

    www.aol.com/trump-proof-state-laws-focus...

    California Gov. Gavin Newsom and state lawmakers will return to the state Capitol on Monday to begin a special session to protect the state’s progressive policies ahead of another Trump presidency.

  9. Existence theorem - Wikipedia

    en.wikipedia.org/wiki/Existence_theorem

    From the other direction, there has been considerable clarification of what constructive mathematics is—without the emergence of a 'master theory'. For example, according to Errett Bishop's definitions, the continuity of a function such as sin(x) should be proved as a constructive bound on the modulus of continuity, meaning that the existential content of the assertion of continuity is a ...