Search results
Results from the WOW.Com Content Network
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement
A uniqueness theorem (or its proof) is, at least within the mathematics of differential equations, often combined with an existence theorem (or its proof) to a combined existence and uniqueness theorem (e.g., existence and uniqueness of solution to first-order differential equations with boundary condition). [3]
A standard proof relies on transforming the differential equation into an integral equation, then applying the Banach fixed-point theorem to prove the existence of a solution, and then applying Grönwall's lemma to prove the uniqueness of the solution.
The disjunction property is satisfied by a theory if, whenever a sentence A ∨ B is a theorem, then either A is a theorem, or B is a theorem.; The existence property or witness property is satisfied by a theory if, whenever a sentence (∃x)A(x) is a theorem, where A(x) has no other free variables, then there is some term t such that the theory proves A(t).
The five law schools in the University of California system are as follows: University of California College of the Law, San Francisco, established in 1878; University of California, Berkeley School of Law, established as a department in 1894 and as a law school in 1912; University of California, Los Angeles School of Law, established in 1949
In mathematics, the Cauchy–Kovalevskaya theorem (also written as the Cauchy–Kowalevski theorem) is the main local existence and uniqueness theorem for analytic partial differential equations associated with Cauchy initial value problems. A special case was proven by Augustin Cauchy , and the full result by Sofya Kovalevskaya .
From the other direction, there has been considerable clarification of what constructive mathematics is—without the emergence of a 'master theory'. For example, according to Errett Bishop's definitions, the continuity of a function such as sin(x) should be proved as a constructive bound on the modulus of continuity, meaning that the existential content of the assertion of continuity is a ...
The University of California, Irvine School of Law (known as UC Irvine Law) is the law school at the University of California, Irvine, a public research university in Irvine, California. Founded in 2007, it is the fifth and newest law school in the University of California system. At the time of its founding, it was the first new public law ...