Search results
Results from the WOW.Com Content Network
Within the Quaternary ice age, there were also periodic fluctuations of the total volume of land ice, the sea level, and global temperatures. During the colder episodes (referred to as glacial periods or glacials) large ice sheets at least 4 km (2.5 mi) thick at their maximum covered parts of Europe, North America, and Siberia.
Greenland ice sheet as seen from space. An ice sheet is a body of ice which covers a land area of continental size - meaning that it exceeds 50,000 km 2. [4] The currently existing two ice sheets in Greenland and Antarctica have a much greater area than this minimum definition, measuring at 1.7 million km 2 and 14 million km 2, respectively.
Even in 1993, Greenland's melt resulted in 300 cubic kilometers of fresh meltwater entering the seas annually, which was substantially larger than the liquid meltwater input from the Antarctic ice sheet, and equivalent to 0.7% of freshwater entering the oceans from all of the world's rivers. [149]
The Antarctic ice sheet covers an area of almost 14 million square kilometres (5.4 million square miles) and contains 26.5 million cubic kilometres (6,400,000 cubic miles) of ice. [6] A cubic kilometer of ice weighs approximately 0.92 metric gigatonnes, meaning that the ice sheet weighs about 24,380,000 gigatonnes. This ice is equivalent to ...
In the best case scenario, under SSP1-2.6 with no ice sheet acceleration after 2100, the estimate was only 0.8–2.0 metres (2.6–6.6 ft). In the worst estimated scenario, SSP-8.5 with ice cliff instability, the projected range for total sea level rise was 9.5–16.2 metres (31–53 ft) by the year 2300.
In 2012, research found that the West Antarctic ice sheet had warmed by 2.4 °C (4.3 °F) since 1958 – around 0.46 °C (0.83 °F) per decade, which was almost double the 2009 estimate. [35] In 2022, Central WAIS warming between 1959 and 2000 was estimated at 0.31 °C (0.56 °F) per decade, with this change conclusively attributed to increases ...
In monatomic gases (like argon) at room temperature and constant volume, volumetric heat capacities are all very close to 0.5 kJ⋅K −1 ⋅m −3, which is the same as the theoretical value of 3 / 2 RT per kelvin per mole of gas molecules (where R is the gas constant and T is temperature). As noted, the much lower values for gas heat ...
The specific enthalpy of fusion (more commonly known as latent heat) of water is 333.55 kJ/kg at 0 °C: the same amount of energy is required to melt ice as to warm ice from −160 °C up to its melting point or to heat the same amount of water by about 80 °C. Of common substances, only that of ammonia is higher.