Search results
Results from the WOW.Com Content Network
A linear function is a polynomial function in which the variable x has degree at most one: [2] = +. Such a function is called linear because its graph, the set of all points (, ()) in the Cartesian plane, is a line. The coefficient a is called the slope of the function and of the line (see below).
In the lower plot, both the area and population data have been transformed using the logarithm function. In statistics, data transformation is the application of a deterministic mathematical function to each point in a data set—that is, each data point z i is replaced with the transformed value y i = f(z i), where f is a function.
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
The transformation of graphs is often formalized and represented by graph rewrite systems. Complementary to graph transformation systems focusing on rule-based in-memory manipulation of graphs are graph databases geared towards transaction-safe, persistent storing and querying of graph-structured data.
A constant function is also considered linear in this context, as it is a polynomial of degree zero or is the zero polynomial. Its graph, when there is only one variable, is a horizontal line. In this context, a function that is also a linear map (the other meaning) may be referred to as a homogeneous linear function or a linear form.
A line graph has an articulation point if and only if the underlying graph has a bridge for which neither endpoint has degree one. [2] For a graph G with n vertices and m edges, the number of vertices of the line graph L(G) is m, and the number of edges of L(G) is half the sum of the squares of the degrees of the vertices in G, minus m. [6]
A composition of four mappings coded in SVG, which transforms a rectangular repetitive pattern into a rhombic pattern. The four transformations are linear.. In mathematics, a transformation, transform, or self-map [1] is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X → X.
ΔY- and YΔ-transformations are a tool both in pure graph theory as well as applications. Both operations preserve a number of natural topological properties of graphs. . For example, applying a YΔ-transformation to a 3-vertex of a planar graph, or a ΔY-transformation to a triangular face of a planar graph, results again in a planar graph.