Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).
Samuel Sanford Shapiro (July 13, 1930 – November 5, 2023) was an American statistician and engineer. He was a professor emeritus of statistics at Florida International University . He was known for his co-authorship of the Shapiro–Wilk test and the Shapiro–Francia test .
The Shapiro–Francia test is a statistical test for the normality of a population, based on sample data. It was introduced by S. S. Shapiro and R. S. Francia in 1972 as a simplification of the Shapiro–Wilk test .
Each of the two competing models, the null model and the alternative model, is separately fitted to the data and the log-likelihood recorded. The test statistic (often denoted by D) is twice the log of the likelihoods ratio, i.e., it is twice the difference in the log-likelihoods:
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
Martin Bradbury Wilk, OC (18 December 1922 – 19 February 2013) [1] [2] was a Canadian statistician, academic, and the former chief statistician of Canada. In 1965, together with Samuel Shapiro , he developed the Shapiro–Wilk test , which can indicate whether a sample of numbers would be unusual if it came from a Gaussian distribution .
Download QR code; Print/export Download as PDF; ... Richard Lowry's Predictive Values and Likelihood Ratios Online Clinical Calculator This page was last edited on 20 ...