Search results
Results from the WOW.Com Content Network
The time to read the first bit of memory from a DRAM without an active row is T RCD + CL. Row Precharge Time T RP: The minimum number of clock cycles required between issuing the precharge command and opening the next row. The time to read the first bit of memory from a DRAM with the wrong row open is T RP + T RCD + CL. Row Active Time T RAS
A high-speed video camera which records to electronic memory, A high-speed framing camera which records images on multiple image planes or multiple locations on the same image plane [3] (generally film or a network of CCD cameras), A high-speed streak camera which records a series of line-sized images to film or electronic memory.
The maximum random access memory (RAM) installed in any computer system is limited by hardware, software and economic factors. The hardware may have a limited number of address bus bits, limited by the processor package or design of the system. Some of the address space may be shared between RAM, peripherals, and read-only memory.
Non-volatile random-access memory (NVRAM) is random-access memory that retains data without applied power. This is in contrast to dynamic random-access memory (DRAM) and static random-access memory (SRAM), which both maintain data only for as long as power is applied, or forms of sequential-access memory such as magnetic tape, which cannot be randomly accessed but which retains data ...
To refresh one row of the memory array using RAS only refresh (ROR), the following steps must occur: The row address of the row to be refreshed must be applied at the address input pins. RAS must switch from high to low. CAS must remain high. At the end of the required amount of time, RAS must return high.
Prior to the development of integrated read-only memory (ROM) circuits, permanent (or read-only) random-access memory was often constructed using diode matrices driven by address decoders, or specially wound core rope memory planes. [citation needed] Semiconductor memory appeared in the 1960s with bipolar memory, which used bipolar transistors ...
Ferroelectric RAM (FeRAM, F-RAM or FRAM) is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory .
One technique used on early IBM XT computers was to install additional RAM into the video memory address range and push the limit up to the start of the Monochrome Display Adapter (MDA). Sometimes software or a custom address decoder was required for this to work. This moved the barrier to 704 KB (with MDA/HGC) or 736 KB (with CGA). [6] [7]