Search results
Results from the WOW.Com Content Network
For instance, the UPC-A barcode for a box of tissues is "036000241457". The last digit is the check digit "7", and if the other numbers are correct then the check digit calculation must produce 7. Add the odd number digits: 0+6+0+2+1+5 = 14. Multiply the result by 3: 14 × 3 = 42. Add the even number digits: 3+0+0+4+4 = 11.
This algorithm is sometimes also known as the crossing number algorithm or the even–odd rule algorithm, and was known as early as 1962. [3] The algorithm is based on a simple observation that if a point moves along a ray from infinity to the probe point and if it crosses the boundary of a polygon, possibly several times, then it alternately ...
The SVG defines the even–odd rule by saying: This rule determines the "insideness" of a point on the canvas by drawing a ray from that point to infinity in any direction and counting the number of path segments from the given shape that the ray crosses. If this number is odd, the point is inside; if even, the point is outside.
The odd–even sort algorithm correctly sorts this data in passes. (A pass here is defined to be a full sequence of odd–even, or even–odd comparisons. The passes occur in order pass 1: odd–even, pass 2: even–odd, etc.) Proof: This proof is based loosely on one by Thomas Worsch. [6]
Accordingly, there are two variants of parity bits: even parity bit and odd parity bit. In the case of even parity, for a given set of bits, the bits whose value is 1 are counted. If that count is odd, the parity bit value is set to 1, making the total count of occurrences of 1s in the whole set (including the parity bit) an even number.
Batcher's odd–even mergesort [1] is a generic construction devised by Ken Batcher for sorting networks of size O(n (log n) 2) and depth O((log n) 2), where n is the number of items to be sorted. Although it is not asymptotically optimal, Knuth concluded in 1998, with respect to the AKS network that "Batcher's method is much better, unless n ...
In the even-odd case, the ray is intersected by two lines, an even number; therefore P is concluded to be 'outside' the curve. By the non-zero winding rule, the ray is intersected in a clockwise direction twice, each contributing -1 to the winding score: because the total, -2, is not zero, P is concluded to be 'inside' the curve.
For example, successively searching through integers 1, 2, 3, … to see if we can find an example of some phenomenon—say an odd perfect number—it is quite easy to write a partially correct program (see box). But to say this program is totally correct would be to assert something currently not known in number theory.