enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. It can be used in conjunction with other tools for evaluating sums.

  4. 1 + 2 + 3 + 4 - 3 + 4 + ... - Wikipedia

    en.wikipedia.org/wiki/Sum_of_natural_numbers

    Sum of Natural Numbers (second proof and extra footage) includes demonstration of Euler's method. What do we get if we sum all the natural numbers? response to comments about video by Tony Padilla; Related article from New York Times; Why –1/12 is a gold nugget follow-up Numberphile video with Edward Frenkel

  5. Natural number - Wikipedia

    en.wikipedia.org/wiki/Natural_number

    Natural numbers are also used as labels, like jersey numbers on a sports team, where they serve as nominal numbers and do not have mathematical properties. [5] The natural numbers form a set, commonly symbolized as a bold N or blackboard bold ⁠ ⁠. Many other number sets are built from the natural numbers.

  6. Digit sum - Wikipedia

    en.wikipedia.org/wiki/Digit_sum

    In mathematics, the digit sum of a natural number in a given number base is the sum of all its digits. For example, the digit sum of the decimal number 9045 {\displaystyle 9045} would be 9 + 0 + 4 + 5 = 18. {\displaystyle 9+0+4+5=18.}

  7. Sum-product number - Wikipedia

    en.wikipedia.org/wiki/Sum-product_number

    The natural numbers 0 and 1 are trivial sum-product numbers for all , and all other sum-product numbers are nontrivial sum-product numbers. For example, the number 144 in base 10 is a sum-product number, because 1 + 4 + 4 = 9 {\displaystyle 1+4+4=9} , 1 × 4 × 4 = 16 {\displaystyle 1\times 4\times 4=16} , and 9 × 16 = 144 {\displaystyle 9 ...

  8. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]

  9. Pairwise summation - Wikipedia

    en.wikipedia.org/wiki/Pairwise_summation

    Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).