Search results
Results from the WOW.Com Content Network
Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer.
In an isosceles triangle, if the ratio of the base angle to the angle at the vertex is algebraic but not rational, is then the ratio between base and side always transcendental? Is a b {\displaystyle a^{b}} always transcendental , for algebraic a ∉ { 0 , 1 } {\displaystyle a\not \in \{0,1\}} and irrational algebraic b {\displaystyle b} ?
An instance of the ErdÅ‘s–Faber–Lovász conjecture: a graph formed from four cliques of four vertices each, any two of which intersect in a single vertex, can be four-colored. The 1-factorization conjecture that if n {\displaystyle n} is odd or even and k ≥ n , n − 1 {\displaystyle k\geq n,n-1} respectively, then a k {\displaystyle k ...
Pages in category "Hilbert's problems" The following 35 pages are in this category, out of 35 total. ... Hilbert's seventh problem; Hilbert's eighth problem;
In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry.In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry (Euclidean, hyperbolic and elliptic), with those axioms of congruence that involve the concept of the angle dropped ...
In 1888, Hilbert showed that every non-negative homogeneous polynomial in n variables and degree 2d can be represented as sum of squares of other polynomials if and only if either (a) n = 2 or (b) 2d = 2 or (c) n = 3 and 2d = 4. [2]
In mathematics, particularly in dynamical systems, the Hilbert–Arnold problem is an unsolved problem concerning the estimation of limit cycles.It asks whether in a generic [disambiguation needed] finite-parameter family of smooth vector fields on a sphere with a compact parameter base, the number of limit cycles is uniformly bounded across all parameter values.
Hilbert proposed that the consistency of more complicated systems, such as real analysis, could be proven in terms of simpler systems. Ultimately, the consistency of all of mathematics could be reduced to basic arithmetic. Gödel's incompleteness theorems, published in 1931, showed that Hilbert's program was unattainable for key areas of ...