Search results
Results from the WOW.Com Content Network
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Compressor characteristic is a mathematical curve that shows the behaviour of a fluid going through a dynamic compressor.It shows changes in fluid pressure, temperature, entropy, flow rate etc.) with the compressor operating at different speeds.
Standard cubic centimeters per minute (SCCM) is a unit used to quantify the flow rate of a fluid. 1 SCCM is identical to 1 cm³ STP /min. Another expression of it would be Nml/min. Another expression of it would be Nml/min.
The cm corresponds in the permeability equations to the thickness of the material whose permeability is being evaluated, the cm 3 STP cm −2 s −1 to the flux of gas through the material, and the cmHg to the pressure drop across the material. That is, it measures the rate of fluid flow passing through an area of material with a thickness ...
is the flow's stagnation pressure. This relationship is valid for the flow of incompressible fluids where variations in speed and pressure are sufficiently small that variations in fluid density can be neglected. This assumption is commonly made in engineering practice when the Mach number is less than about 0.3.
The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees ...
In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.
Another factor that is used to establish the maximum flow line is a pressure ratio near or equal to 1. The 50% speed line may be considered an example of this. The shape of Figure 5.2's speed-lines provides a good example of why it is inappropriate to use the term choke in association with a maximum flow of all centrifugal compressor speed-lines.