Search results
Results from the WOW.Com Content Network
In the example below, there is an output dependency between instructions 3 and 1 — changing the ordering of instructions in this example will change the final value of A, thus these instructions cannot be executed in parallel. 1. B = 3 2. A = B + 1 3. B = 7 As with anti-dependencies, output dependencies are name dependencies. That is, they ...
A statement S2 is output dependent on S1 (written ) if and only if S1 and S2 modify the same resource and S1 precedes S2 in execution. The following is an example of an output dependence (WAW: Write After Write): S1 x := 10 S2 x := 20 Here, S2 and S1 both set the variable x.
In this example, there is an output dependence between statements S1 and S2. Here, the variable c is first written to in S1 and then variable c is written to again in statement S2. This output dependence can be represented by S1 →O S2. An output dependence can be seen by different iterations in a loop.
WAW dependencies are also known as output dependencies. Write-after-read (WAR) a read from a register or memory location must return the last prior value written to that location, and not one written programmatically after the read. This is a sort of false dependency that can be resolved by renaming. WAR dependencies are also known as anti ...
Example: A situation in which multiple instructions are ready to enter the execute instruction phase and there is a single ALU (Arithmetic Logic Unit). One solution to such resource hazard is to increase available resources, such as having multiple ports into main memory and multiple ALU (Arithmetic Logic Unit) units.
In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]
For example, consider a simple true dependence: 1: add $1, $2, $3 # R1 <= R2 + R3 2: add $5, $1, $4 # R5 <= R1 + R4 (dependent on 1) In this example, the add instruction on line 2 is dependent on the add instruction on line 1 because the register R1 is a source operand of the addition operation on line 2.
A simple and sufficient test for the absence of a dependence is the greatest common divisor (GCD) test. It is based on the observation that if a loop carried dependency exists between X[a*i + b] and X[c*i + d] (where X is the array; a, b, c and d are integers, and i is the loop variable), then GCD (c, a) must divide (d – b).