enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    Although the moment () and displacement generally result from external loads and may vary along the length of the beam or rod, the flexural rigidity (defined as ) is a property of the beam itself and is generally constant for prismatic members. However, in cases of non-prismatic members, such as the case of the tapered beams or columns or ...

  3. Structural rigidity - Wikipedia

    en.wikipedia.org/wiki/Structural_rigidity

    Rigidity is the property of a structure that it does not bend or flex under an applied force. The opposite of rigidity is flexibility.In structural rigidity theory, structures are formed by collections of objects that are themselves rigid bodies, often assumed to take simple geometric forms such as straight rods (line segments), with pairs of objects connected by flexible hinges.

  4. Shear modulus - Wikipedia

    en.wikipedia.org/wiki/Shear_modulus

    The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),

  5. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    L is the beam length G is the modulus of rigidity (shear modulus) of the material J is the torsional constant. Inverting the previous relation, we can define two quantities; the torsional rigidity, = with SI units N⋅m 2 /rad. And the torsional stiffness,

  6. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    The beam is initially straight with a cross section that is constant throughout the beam length. The beam has an axis of symmetry in the plane of bending. The proportions of the beam are such that it would fail by bending rather than by crushing, wrinkling or sideways buckling. Cross-sections of the beam remain plane during bending.

  7. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    For example, a point on a horizontal beam can undergo both a vertical displacement and a rotation relative to its undeformed axis. When there are degrees of freedom a matrix must be used to describe the stiffness at the point. The diagonal terms in the matrix are the direct-related stiffnesses (or simply stiffnesses) along the same degree of ...

  8. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    where is the deflection of the beam and is the distance along the beam. Double integration of the above equation leads to computing the deflection of the beam, and in turn, the bending stiffness of the beam. Bending stiffness in beams is also known as Flexural rigidity.

  9. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    Consider a beam whose cross-sectional area increases in one dimension, e.g. a thin-walled round beam or a rectangular beam whose height but not width is varied. By combining the area and density formulas, we can see that the radius or height of this beam will vary with approximately the inverse of the density for a given mass.