Search results
Results from the WOW.Com Content Network
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections.It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic.
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722 The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1]
The geometric-distance matrix is a different type of distance matrix that is based on the graph-theoretical distance matrix of a molecule to represent and graph the 3-D molecule structure. [8] The geometric-distance matrix of a molecular structure G is a real symmetric n x n matrix defined in the same way as a 2-D matrix.
In the matrix notation, the adjacency matrix of the undirected graph could, e.g., be defined as a Boolean sum of the adjacency matrix of the original directed graph and its matrix transpose, where the zero and one entries of are treated as logical, rather than numerical, values, as in the following example:
Lemma 1. ′ =, where ′ is the differential of . This equation means that the differential of , evaluated at the identity matrix, is equal to the trace.The differential ′ is a linear operator that maps an n × n matrix to a real number.
A matrix polynomial equation is an equality between two matrix polynomials, which holds for the specific matrices in question. A matrix polynomial identity is a matrix polynomial equation which holds for all matrices A in a specified matrix ring M n ( R ).
In the mathematical field of algebraic graph theory, the degree matrix of an undirected graph is a diagonal matrix which contains information about the degree of each vertex—that is, the number of edges attached to each vertex. [1]