Search results
Results from the WOW.Com Content Network
Every rotation in three dimensions is defined by its axis (a vector along this axis is unchanged by the rotation), and its angle — the amount of rotation about that axis (Euler rotation theorem). There are several methods to compute the axis and angle from a rotation matrix (see also axis–angle representation ).
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...
The elements of the rotation matrix are not all independent—as Euler's rotation theorem dictates, the rotation matrix has only three degrees of freedom. The rotation matrix has the following properties: A is a real, orthogonal matrix, hence each of its rows or columns represents a unit vector.
The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...
Similarly, a rotation matrix requires orthogonal basis vectors, so in 3D space the third vector can unambiguously be calculated from the first two vectors with a cross product (though there is ambiguity in the sign of the third vector if improper rotations are allowed).
To change the formulas for passive rotations (or find reverse active rotation), transpose the matrices (then each matrix transforms the initial coordinates of a vector remaining fixed to the coordinates of the same vector measured in the rotated reference system; same rotation axis, same angles, but now the coordinate system rotates, rather ...
That it is an orthogonal matrix means that its rows are a set of orthogonal unit vectors (so they are an orthonormal basis) as are its columns, making it simple to spot and check if a matrix is a valid rotation matrix. Above-mentioned Euler angles and axis–angle representations can be easily converted to a rotation matrix.
is a unit vector representing the axis of rotation. For a pure quaternion = +, the rotated ... The SU(2)-matrix corresponding to a rotation, in terms of its Euler ...