Search results
Results from the WOW.Com Content Network
However, if the slope is taken to be a single real number then a horizontal line has slope = while a vertical line has an undefined slope, since in real-number arithmetic the quotient is undefined. [10] The real-valued slope of a line through the origin is the vertical coordinate of the intersection between the line and a vertical line at ...
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
For example, the imaginary number is undefined within the set of real numbers. So it is meaningless to reason about the value, solely within the discourse of real numbers. However, defining the imaginary number i {\displaystyle i} to be equal to − 1 {\displaystyle {\sqrt {-1}}} , allows there to be a consistent set of mathematics referred to ...
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
L'Hôpital's rule then states that the slope of the curve at the origin (t = c) is the limit of the tangent slope at points approaching the origin, provided that this is defined. Proof of L'Hôpital's rule
The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.
In this example, the equation can be solved in y, giving =, but, in more complicated examples, this is impossible. For example, the relation y 5 + y + x = 0 {\displaystyle y^{5}+y+x=0} defines y as an implicit function of x , called the Bring radical , which has R {\displaystyle \mathbb {R} } as domain and range.
Conversely the period of the repeating decimal of a fraction c / d will be (at most) the smallest number n such that 10 n − 1 is divisible by d. For example, the fraction 2 / 7 has d = 7, and the smallest k that makes 10 k − 1 divisible by 7 is k = 6, because 999999 = 7 × 142857.