Search results
Results from the WOW.Com Content Network
Demonstration model of a direct methanol fuel cell (black layered cube) in its enclosure Scheme of a proton-conducting fuel cell. A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) [1] into electricity through a pair of redox reactions. [2]
Electro-chemical reaction Diagram of PEM MEA. A membrane electrode assembly (MEA) is an assembled stack of proton-exchange membranes (PEM) or alkali anion exchange membrane (AAEM), catalyst and flat plate electrode used in fuel cells and electrolyzers. [1] [2]
Block diagram of a fuel cell. Source I (Paulsmith99 ) created this work entirely by myself, based on the original png version. Date 17:35, 25 June 2010 (UTC) Author Paulsmith99 Permission (Reusing this file) See below. Other versions Fuel Cell Block Diagram.png
The car "Schluckspecht" completed a successful test drive on Nogaro Circuit, powered by a DEFC stack giving an output voltage of 20 to 45 V (depending on load). [4] Various prototypes of Direct Ethanol Fuel Cell Stack mobile phone chargers have been built [5] featuring voltages from 2V to 7V and powers from 800 mW to 2W [6] were built and tested.
If the fuel is a light hydrocarbon, for example, methane, another function of the anode is to act as a catalyst for steam reforming the fuel into hydrogen. This provides another operational benefit to the fuel cell stack because the reforming reaction is endothermic, which cools the stack internally.
Diagram of an Alkaline Fuel Cell: 1. Hydrogen 2. Electron flow 3. Load 4. Oxygen 5. Cathode 6. Electrolyte 7. Anode 8. Water 9. Hydroxide Ions. The alkaline fuel cell (AFC), also known as the Bacon fuel cell after its British inventor, Francis Thomas Bacon, is one of the most developed fuel cell technologies. Alkaline fuel cells consume ...
For example, fuel crossover means that low concentrations need to be used which limits the available power of the cell. In solid oxide fuel cells, high temperatures are needed which require energy and can also lead to quicker degradation of materials. Membraneless fuel cells offer a solution to these problems.
SOEC 60 cell stack. A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water (and/or carbon dioxide) [1] by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas [2] (and/or carbon monoxide) and oxygen.