Search results
Results from the WOW.Com Content Network
When the shell is fired through the wire, the circuit is broken, by which the speed of the shell can be checked. The Velocity Screen being disassembled after use. Muzzle velocity is the speed of a projectile (bullet, pellet, slug, ball/shots or shell) with respect to [1] the muzzle at the moment it leaves the end of a gun's barrel (i.e. the ...
Generally speaking, a projectile with greater volume faces greater air resistance, reducing the range of the projectile. (And see Trajectory of a projectile .) Air resistance drag can be modified by the projectile shape: a tall and wide, but short projectile will face greater air resistance than a low and narrow, but long, projectile of the ...
To stop the impactor, this momentum must be transferred onto another mass. Since the impactor's velocity is so high that cohesion within the target material can be neglected, the momentum can only be transferred to the material (mass) directly in front of the impactor, which will be pushed at the impactor's speed. If the impactor has pushed a ...
Example photo of the over-penetration of a fragmenting projectile. This class of projectile is designed to break apart on impact whilst being of a construction more akin to that of an expanding bullet. Fragmenting bullets are usually constructed like the hollow-point projectiles described above, but with deeper and larger cavities.
Muzzle energy is dependent upon the factors previously listed, and velocity is highly variable depending upon the length of the barrel a projectile is fired from. [2] Also the muzzle energy is only an upper limit for how much energy is transmitted to the target, and the effects of a ballistic trauma depend on several other factors as well ...
The standard model projectile is a "fictitious projectile" used as the mathematical basis for the calculation of actual projectile's trajectory when an initial velocity is known. The G1 model projectile adopted is in dimensionless measures of 2 caliber radius ogival-head and 3.28 caliber in length.
Shooting the weapon calls the hitscan function, and if an object is detected in the projectile's path, a hit is registered. Since the effect is immediate, the projectiles effectively travel at infinite speed and have a linear or otherwise simple trajectory—a practical approximation of a bullet's speed and accuracy over short distances.
The predicted impact point (PIP) is the location that a ballistic projectile (e.g. bomb, missile, bullet) is expected to strike if fired. The PIP is almost always actively determined by a targeting computer, which then projects a PIP marker (a "pipper") onto a head-up display (HUD).