Search results
Results from the WOW.Com Content Network
Clock signal and legend. In electronics and especially synchronous digital circuits, a clock signal (historically also known as logic beat) [1] is an electronic logic signal (voltage or current) which oscillates between a high and a low state at a constant frequency and is used like a metronome to synchronize actions of digital circuits.
A timing diagram can contain many rows, usually one of them being the clock. It is a tool commonly used in digital electronics, hardware debugging, and digital communications. Besides providing an overall description of the timing relationships, the digital timing diagram can help find and diagnose digital logic hazards .
A clock generator is an electronic oscillator that produces a clock signal for use in synchronizing a circuit's operation. The output clock signal can range from a simple symmetrical square wave to more complex arrangements. The basic parts that all clock generators share are a resonant circuit and an amplifier.
In digital electronic design a clock domain crossing (CDC), or simply clock crossing, is the traversal of a signal in a synchronous digital circuit from one clock domain into another. If a signal does not assert long enough and is not registered, it may appear asynchronous on the incoming clock boundary.
There are two types of violation that can be caused by clock skew. One problem is caused when the clock reaches the first register and the clock signal towards the second register travels slower than output of the first register into the second register - the output of the first register reaches the second register input faster and therefore is clocked replacing the initial data on the second ...
Clock recovery addresses this problem by embedding clock information into the data stream, allowing the transmitter's clock timing to be determined. This normally takes the form of short signals inserted into the data that can be easily seen and then used in a phase-locked loop or similar adjustable oscillator to produce a local clock signal ...
But the output track can cross clock lines and other gate outputs, all of which can change the charge on the capacitor. So that the gate output voltage remains at some safe 0 or 1 level during the cycle, the amount of change has to be calculated, and, if necessary, additional (diffusion) capacitance has to be added to the output node.
Digital clocks typically use the 50 or 60 hertz oscillation of AC power or a 32,768 hertz crystal oscillator as in a quartz clock to keep time. Most digital clocks display the hour of the day in 24-hour format; in the United States and a few other countries, a commonly used hour sequence option is 12-hour format (with some indication of AM or PM).